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Grid: Resource- Sharlng Envwonment

e
g

m Users:

= 1000s from 10s institutions

= Well-established communities
s Resources:

=« Computers, data, instruments,
storage, applications

= Owned/administered by institutions

= Applications: data- and compute-
Intensive processing

= Approach: common infrastructure
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i The Problem

= We have now:
= Mature grid deployments running in production mode
= We do not have yet:
m=————= Quantitative characterization of real workloads.
WANTED = How many files, how much input data per process, etc.
= | = And thus, benchmarks, workload models, reproducible results
= Costs:
= Local solutions, often replicating work
= “Temporary” solutions that become permanent
= Far from optimal solutions
= Impossible to compare alternatives on relevant workloads




i still, Why Should We Care?

= Impossibility results, high costs: Tradeoffs are necessary

= Solution: Select tradeoffs based on
= User requirements (of course) £
= Usage patterns s o
= Patterns exist and can be exploited. Examples:

= Zipf distribution for request popularity (web caching) Breslau et al.,
Infocom’99

= Network topology:
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from Saroiu et al., MMCN 2002



i This Presentation

= ...Characterizes workloads from DZero from the
perspective of data management

= Data Is the main resource shared in many grids
= High-energy physics domain
= Potentially representative for other domains

= ...proposes a data abstraction (7ilecule) relevant to
multi-file data processing

= ..Identifies a novel pattern (small-world file
sharing) relevant to data sharing

= ...Shows benefits via experiments
= and invites your comments and suggestions.




i The D@ Experiment

High-energy physics data grid
= 72 institutions, 18 countries, 500+ physicists
= Detector Data

= 1,000,000 Channels

= Event rate ~50 Hz

= So far, 1.9 PB of data (Update?)
= Data Processing

= Signals: physics events

= Events about 250 KB, stored in files of ~1GB

= Every bit of raw data is accessed for
processing/filtering

= Past year overall: 0.6 PB (Update?)
= D@:

= ... processes PBs/year

= ... processes 10s TB/day

= ... uses 25% — 50% remote computing 6




!'_ D@ Workload Characterization

Joint work with

Shyamala Doraimani (USF) and
Gabriele Garzoglio (FNAL)



i D@ Traces (thanks to Ruth and Gabriele)

Traces from January 2003 to May 2005 2%
234,000 jobs, 561 users, 34 domains, ™7

1.13 million files accessed
108 input files per job on average

Detailed data access information about 4co
half of these jobs (113,062)

T

800

600

T

T

200 | |

b
O NLIVAA, W8

0 100 200 300 400 500 600 700

Day

Table 1. Characteristics of traces analyzed per data tier.

Data Tier Users Jobs Files | Input/Job (MB) | Time/Job (hours)
Reconstructed 320 17898 | 515677 36371 11.01
Root-tuple 63 1307 | 60719 83041 13.68
Thumbnail 449 | 94625 | 428610 53619 4.89
Others 35| 120962 N/A N/A 7.68
All 561 | 233792 N/A N/A 6.87




i Contradicts Traditional Models

File size distribution

= Expected: log-normal. Why
not?
= Deployment decisions ol ]
= Domain specific §1§mw ]
= Data transformation CUT T Resewe T T

File popularity distribution

= Expected: Zipf. Why not? . .|
(speculations):

= Scientific data is uniformly interesting
= User community is relatively small




Time Locality

Stack-depth analysis
= Good temporal locality

= (to be used in cache
replacement algorithms)

B

Xx10

Measure Value
Mastimum 946,600
I percentile 85
10 percentile 960
50 percentile (Median) | 12,260
90 percentile 90,444
Standard Dewviation 79,300

15 . .

Stack depth
=

o

File Access
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“YMolecule - Wikipedia, the free encyclopedia - Mozilla Firefox
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Molecule i

From Wikipedia, the free encyclopedia

In chemistry, a molecule is generally an aggregate of at least two atoms in a
definite arrangement held together by special foroes.“] Generally, a molecule is
considered the smallest particle of a pure chemical substance that still retains its
composition and chemical properties.[z] Even for some pure chemical substances
existing as liguids or solids {such as metals, molten salts, crystals, etc. ) such a
definition may not always be possible, and it must recognized that such
substances are composed of atoms, but sof recognizable molecules. In the
molecular sciences, a molecule is a sufficiently stable, electrically neutral entity
composed of two or more atoms.[a] The concept of "monatomic molecule", i e. a
single-atom as found in noble gases, is used almost exclusively in the kinetic
theory of gases.[4] Folyatomic ions may sometimes be usefully thought of as

electrically-charged molecules.
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i Filecules: General Characteristics

Table 2. Characteristics of analyzed traces per location.

Domain Jobs | Submission nodes | Sites | # users | # filecules # files | Total data (GB)
goV 3319711 12 1 466 95234 | 945031 4930850
de 390186 5 4 23 33403 | 100257 268815
uk 131760 8 4 21 23876 | 62427 117097
edu 54672 18 12 32 14504 | 36868 41081
cZ 7400 1 1 1 4789 7660 9869
.ca 5719 5 2 4 649 8937 22341
Ar 5086 2 1 11 1767 18215 23958
1l 3854 3 2 8 888 38812 44012
1nx 146 1 1 1 32 1589 349
br 12 2 2 2 2 2 2
cn 4 1 1 2 2 62 31
An 3 1 1 2 2 2 0.70

Filecules in High-Energy Physics: Characteristics and Impact on Resource Management,
Adriana lamnitchi, Shyamala Doraimani, Gabriele Garzoglio, HPDC’06
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i Filecules: Size
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i Filecules: Popularity
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i Consequences for Caching

= Use filecule membership for prefetching
= When a file is missing from the local cache, prefetch
the entire filecule
= Use time locality in cache replacement
= Least Recently Used (classic algorithm)

= Implemented:
= LRU with files and LRU with filecules

= Greedy Request Value: prefetching + job reordering
= Does not exploit temporal locality
= Prefetching based on cache content
« Our variant of LRU with filecules and job reordering
E. Otoo, et al. Optimal file-bundle caching algorithms for data-grids. In SC 04



Comparison: Caching Algorithms (1)
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Comparison: Caching Algorithms (2)
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i Summary Part 1

= Revisited traditional workload models
= Generalized from file systems, the web, etc.

= Some confirmed (temporal locality), some infirmed (file size
distribution and popularity)

= Compared caching algorithms on DO data:
= Temporal locality is relevant
= Filecules guide prefetching

Metric

Algorithm with the best performance

Byte hit rate

Percentage of cache change
Job Waiting Time

Queue Length

Scheduling Overhead

Filecule LRU

LRU-Bundle

GRV

GRV

File LRU and Filecule LRU
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Small Worlds in Scientific

Communities: Characteristics and
!'_ Significance

Joint work with
Matel Ripeanu (UBC) and
lan Foster (ANL and UChicago)




“No 24 in B minor, BWV 869’

“Les Bonbons”

New metric: The Data-Sharing Graph G,/ (V, E)
o Vs set of users active during interval 7

o An edge in £ connects users that asked for at least /m
common files within T

20



6 months of traces (January —
300+ users, 2 million requests for 200K files

Average path length: 7days, 50 files
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i Small-World Graphs

= Small path length, large clustering coefficient
= Typically compared against random graphs

= Think of:

= “It’s a small world!”
= “Six degrees of separation”

= Milgram’s experiments in the 60s
= Guare’s play “Six Degrees of Separation”

22



i Other Small Worlds
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D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks. Nature, 393:440-442, 1998
R. Albert and A.-L. Barabasi, Statistical mechanics of complex networks, R. Modern Physics 74, 47 (2002).



Web Data-Sharing Graphs
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i D@ Data-Sharing Graphs

Avg. path length ratio (log scale)
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KaZaA Data-Sharing Graphs
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ilnterest-Aware Data Dissemination
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Amazon’s Simple Storage Service:

!'_ Cost Evaluation for DO

Work with Mayur Palankar,
Ayodele Onibokun (USF) and
Matel Ripeanu (UBC)




i Amazon’s Simple Storage Service

= Novel storage ‘utility’:
= Direct access to storage

= Self-defined performance targets:

= Scalable, infinite data durability, 99.99% availability,
fast data access

= Pay-as-you go pricing:
= $0.15/month/GB stored and $0.20/GB transferred
= Recently updated pricing scheme

Is offloading data storage from an in-house
mass-storage system to S3 feasible and
cost-effective for scientists?

29



i Amazon S3 Architecture

= Two level namespace

= Buckets (think directories)
= Unique names
= Two goals: data organization and charging

= Data objects
= Opague object (max 5GB)
= Metadata (attribute-value, up to 4K)

= Functionality
= Simple put/get functionality
= Limited search functionality
= Objects are immutable, cannot be renamed

= Data access protocols
= SOAP
« REST
= BitTorrent

30



i S3 Architecture (...cont)

= Security

= ldentities
= Assigned by S3 when initial contract is ‘signed’
= Authentication
= Public/private key scheme
= But private key is generated by Amazon!
= Access control
= Access control lists (limited to 100 principals)
= ACL attributes

FullControl,
Read & Write (for buckets only for writes)
ReadACL & WriteACL (for buckets or objects)

= Auditing (pseudo)
« S3 can provide a log record

31



Approach

= Characterize S3
= Does it live up to its own expectations?

= Estimate the performance and cost of a representative
scientific application (DZero) in this context

= |Is the functionality provided adequate?

S3 characterization methodology

= Black-box approach using PlanetLab nodes to estimate:
= durability,
= availability,
= access performance,
= the effect of BitTorrent on cost savings

s |Isolate local failures

32



i S3 Evaluation

= Durability
= Perfect (but based on limited scale experiment)
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i S3 Evaluation: Security
SKS

= Traditional risks with distributed storage are still a concern:
= Permanent data loss,
= Temporary data unavailability (DoS),
= Loss of confidentiality
= Malicious or erroneous data modifications
= New risk: direct monetary loss
= Magnified as there is no built-in solution to limit loss

= Security scheme’s big advantage: it's simple

m ... but has limitations

= Access control
= Hard to use ACLs in large systems — needs at least groups
= ACLs limited to 100 principals
No support for fine grained delegation
Implicit trust between users and the service S3
= NoO ‘receipts’
= No support for un-repudiabiliy
= No tools to limit risk



i S3 Evaluation: Cost

= Hypothetical scenario:

= S3 used by a scientific community: The DZero
Experiment
« 375 TB data, 5.2 PB processed

m Costs

= Scenario 1: All data stored at S3 and processed by DZero
= Storage $675,000/year for storage ($.15/GB)
= Transfer $462,222/year for transfer ($.20/GB. Now $.13-$.18/GB)
- $94,768 per month !
= Scenario 2: Reducing transfer costs

= Caching: With a 50TB cooperative cache - $66,329 per year in
transfer costs

= Using EC2 - No transfer costs but about 45K in compute costs.
= Scenario 3: Reducing storage costs
= Useful characteristic: data gets ‘cold’

Throw away derived data
Archive old data — better with S3 support 35



i Summary

= Workload characterization based on a HEP grid

= Quantify scale (data processed, number of
files)

=« Contradict traditional models
= Patterns can guide resource management
= Filecules: caching, data replication

= Small world data sharing: adaptive
Information dissemination, replica placement

36



!'_ Thank you.



Questions

+

= Storage costs for DO: how do they
compared with S3 costs?

= Would you use a storage utility?

= What would you request from a storage
utility provider:

= Usage records: need to be private?
= Benefits

s Other traces?

38



Other Performance Metrics
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